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A Geometrical Measure for Entropy Changes 
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The geometrical approach to statistical mechanics is used to discuss changes in 
entropy upon sequential displacements of the state of the system. An inter- 
pretation of the angle between two states in terms of entropy differences is 
thereby provided. A particular result of note is that any state can be resolved 
into a state of maximal entropy (both states having the same expectation values 
for the constraints) and an orthogonal component. A cosine law for the general 
case is also derived. 
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1. I N T R O D U C T I O N  

The geometrical  approach  to thermodynamics(l~ has centered at tention on 
equilibrium states. More  recently, it has been applied to processes (z3~ and 
has been generalized to systems not  in equilibrium. (4 8) Our  intention here 
is to consider a general process through a sequence of  arbi t rary states and 
relate the fundamental  new notion of  the geometrical  approach,  namely, 
the angle between two states, to the change in entropy. 

When we adopt  a statistical description where the physical state of  the 
system is given uniquely by specifying a probabil i ty distribution 
{p~, i =  1,..., N} over the N possible, mutual ly  exclusive, and collectively 
exhaustive states. In the geometrical  approach  the scalar p roduc t  of two 
states is given by 

p ' q = ~  go.p"q j ( 1 )  
i j 
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where g~j is the metric tensor for the space of states. (4-s) It proves con- 
venient to regard the space of states as Euclidean and this can always be 
arranged by using an N-dimensional space. (7) The physical states are then 
confined to an (N-1)-dimensional  subspace (the unit hypersphere (7)) by 
the requirement of normalization 

p . p  = 1 (2)  

On the subspace of physical states, the shortest distance (s) d between two 
states p and q is the angle between them(7): 

d = c o s  l(p.q)  

=COS l [~i (Pi)l/2(qi)l/2 ] (3) 

Locally, the metric is given by 

g gj = 6 (~/p s (4) 

It can be regarded as a reflection of the convexity property of the infor- 
mation theoretic entropy S = - ~ ,  pi In pi, i.e., 

go = - ~ 2 s / &  OpJ (5) 

Figure 1 which shows contours connecting states of equal entropy on the 
unit sphere in N = 3 dimensions is useful in elucidating this aspect. In Sec- 
tions 2 and 3 we shall relate the changes in entropy to the geometry on the 
sphere. In particular we note from (4) and (1) that the scalar product of 
two independent infinitesimal displacements 6p ~ and 6q ~ both originating 
from the same state pOi is given by 

5p" 6q = ~ 6pi (Sq~ pOi (6) 

2. E N T R O P Y  

The quantity of interest in discussing availability and dissipation is the 
entropy deficiency (9'1~ between the distributions p and pO: 

DS(p, pO) = ~ pi ln(pi/pO~) (7) 
i 

In vector notation, the entropy is the scalar product of the state vector p 
and the surprisal, I i = - l n  pi, which is a vector in the dual space (7) of 
observables 

s = i . p  (8) 
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Fig. 1. Contour plot of the entropy for a normalized distribution of three states (N= 3). 
Shown are contours connecting states of equal entropy, with the numerical value of the 
entropy as given in the drawing. The proper plot should be over the first octant of the unit 
sphere in three-dimensional Cartesian space Pi= x2, S = - 2  Y', x~ In xi, i = 1, 2, 3, xi >t O. 
Shown instead is a projection defined in terms of r and 0 (the angular coordinates of a point 
on the unit sphere, xl = sin 0 cos ~b, x2 = sin 0 sin ~b, x3 = cos 0). 

S imi la r ly  

D S =  (I o - I ) - p  (9) 

C o n s i d e r  n o w  th ree  d i f ferent  d i s p l a c e m e n t s  of  state.  O n e  b e t w e e n  p 

a n d  po, one  b e t w e e n  q a n d  pO a n d  one  b e t w e e n  p a n d  q. T h e n  

D S = D S ( q ,  p O ) _  [ D S ( q ,  p ) +  D S ( p ,  pO)] (10) 

F o r  smal l  d i s p l a c e m e n t s  whe re  

p = p ~  
(11) q = p O + 6 p + f q  

822/42/5-6~26 
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one obtains to second order in the displacements 

DS = 6p" c3q =_ ~i jPipoi(~qi (12) 

The result (12) is the relation between the change in entropy and the 
angle between two consecutive displacements of the state. In Section 3 we 
examine three particular cases: (1)orthogonal  displacements 6 p . 6 q = 0 ,  
(2) displacements along a geodesic, and (3)general consecutive steps where 
we interpret (12) as a "cosine law" on the unit (hyper)sphere. 

3. D I S P L A C E M E N T S  

We consider the angles between different possible displacement of 
states. 

3.1. Or thogonal  Displacements 

The first results is of interest in the variety of contexts wherein one 
represents the distribution of one of maximal entropy subject to one or 
more constraints. (11) We shall work with one constraint only since it sim- 
plifies the notation and the required generalization to many constraints is 
rather obvious. 

Let q and p be two distinct normalized distributions which are both 
consistent with the same constraint, that is, 

A.q= ~ Aiq'= (A) (13a) 
i 

A.p= ~ Aipi= ~A) (13b) 
i 

here A~ is the value of the observable A for the state i and we emphasize 
that the numerical value, ( A ) ,  of the expectation of the observable is the 
same in (13a) and (13b). To insure that p and q are distinct the reader may 
wish to take it (12) that there is at least one nontrivial observable B such 
that 

B . p 4 ~ B . q  (14) 

However, we shall not use (14) explicitly in what follows. 
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Our second condition is that both p and p0 are normalized dis- 
tributions whose entropy is maximal, subject to a given expectation value 
(not quite the same) of A: 

<A>=A.p=A.p~ 

3 < A ) = ~ A i 6 p  i 
i 

(15) 

By our condition 

p~= c x p [ -  (2o + 320) - (2 + 32) Ai] 

pOi= e x p [ - 2  o - 2Ai] 
(16) 

Here 20 is the Lagrange multiplier for normalization. To compute 6pi= 
p ~  pO~ we note that since Z 6P ~= 0 and 32 is small it follows that 

and so, from (16) 

32 o= - < A >  32 (17) 

(6pi/p ~ = -32(A~ - < A ) ) ~ ln(p~/p ~ ( 18 ) 

Using (13), (18), and the definition (1) of the scalar product of two vectors 
we obtain from (10) 

A D S  = [-i(pO)_ i(p)]. (q _p) 

: 3 p .  ( q - p ) : 0  (19) 

The orthogonality of q - p  to 3p, as stated in (19) is a central result of 
this paper. It states the following: A distribution is a point in our space. 
Consider the set of normalized and unique distributions which are of 
maximal entropy subject to the expectation value of the observable A. As 
<A ) varies, the distribution changes in a continuous fashion and hence by 
varying <A> we trace a continuous curve. Other distributions (such as q) 
which have a given value of <A > are always orthogonal to a small dis- 
placement 3p along the curve, ( q -  p) '3p = 0. 

A special case of our result is when p is a distribution of maximal 
entropy subject to a given value, <A >, of the expectation of A, and q is a 
distribution of maximal entropy subject to given values of <A> and of 
<B), <B> = B . q  such that (14) holds. For that case the result 3 D S = O  
was derived by Hobsen and Cheng. 112) It leads to a special version of our 
conclusion: In the maximum entropy formalism the addition of a con- 
straint always shifts the distribution in a perpendicular direction. This 
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observation is relevant to the description of relaxation in terms of dis- 
tributions of maximal entropy (~3) with a diminishing number of 
constraints.(14) 

3.2. Parallel Displacements 

From orthogonal we turn to parallel displacements, that is, to the dis- 
tance d2o from po to q being the sum 

d2o = d21 + dlo (20) 

of the distances from p0 to p and from p to q, respectively. Since our nor- 
malized distributions are points on the unit (hyper) sphere (v) we expect 
that (20) will be satisfied when the three distributions lie along a geodesic. 
This is indeed so, almost by definition, and so we provide a proof only for 
the simplest case, that of three state. On the sphere, p0, p, and q lie on a 
geodesic if the determinant d, 

(p01)1/2 (p02)1/2 (l__pOl__p02)l/2 
zJ (pl)1/2 (p2)1/2 (1 _ p l -  p2)1/2 (21) 

(ql)1/2 (q2)1/2 (l --q~- q2)1/2 

vanishes, A = 0. Now, using (3), 

1 COS do1 

A 2= COS do1 1 

cos do2 cos d12 

The solution of A 2 = 0 is do2 = dol • d12. | 

COS do2 

cos d~2 

1 

(22) 

3.3. General Displacements: The Cosine Law 

In the general case, where 6p and 6q are neither orthogonal nor 
parallel to one another, we can interpret the angle between 6p and 6q in 
terms of the law of cosines. Indeed one readily verifies that in the general 
case (cf. Fig. 2) 

cos do2 = cos d01 cos d12 + sin d01 sin do2 cos 7 (23) 

where cos 7 is the angle between 6p and 6q 

cos 7 = 6p'6q/[(gp.gp)(g)q.6q)] 1/2 (24) 

The result (23) will be recognized as the law of cosines for spherical 
triangles (cf. Fig. 2). 
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Fig. 2. The spherical triangle defined by p0 p, and q as its three vertices. Shown are the three 

great circles such that any two distributions lie on one circle, c = d02, a = dot, b = d~2. 

4. CONCLUDING REMARKS 

Geometrical concepts can be used to advantage in interpreting the 
statistical description of systems. An example discussed in some detail is 
that ~he removal of a constraint corresponds to an orthogonal projection. 3 
It is our intention and hope that such considerations wi]] prove usefuI in 
discussing processes which occur at a finite rate and are thus accompanied 
by dissipation. 
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